ADVERTISEMENTS:
After reading this essay you will learn about:- 1. Bhopal: The Union Carbide Gas Leak 2. The 1952 London Smog Disaster 3. The Bangladesh Arsenic Crisis 4. The 2004 Asian Earthquake and Tsunami.
Essay # 1. Bhopal: The Union Carbide Gas Leak:
December 3, 1984 has become a memorable day for the city of Bhopal in Madhya Pradesh country, India. Shortly after midnight, a poisonous gas cloud escaped from the Union Carbide India Limited (UCIL) pesticide factory. The cloud contained 15 metric tons of methyl isocyanate (MIC), covering an area of more than 30 square miles. The gas leak killed at least 4.000 local residents instantly and caused health problems such as oedema for at least 50.000 to perhaps 500.00 peoples. These health problems killed around 15.000 more victims in the years that followed.
Approximately 100.000 people still suffer from chronic disease consequential to gas exposure, today. Research conducted by the BBC in 2004 pointed out that this pollution still causes people to fall ill, and ten more die every year. This event is now known as the worst industrial environmental disaster to ever have occurred.
ADVERTISEMENTS:
The cause of the accident has been researched after the disaster. Apparently water ended up in MIC storage tanks, causing an exothermal reaction that released an amount of poisonous gas large enough to open the safety valves. Normally scrubbers would intercept escaping gas, but these were temporarily out of order for repair.
Research showed that factory personnel neglected a number of safety procedures. There were no valves to prevent water from entering the storage tanks. The cooling installation of the tanks and the flaring installation that might have flared the gas that was released were out of order.
Safety was very low in this factory of Union Carbide, compared to its other locations. The safety procedures were neglected because of budget cuts. Union Carbide was accused of deliberate evasion of regular safety procedures. During lawsuits where victims demanded compensation, documents were revealed which proved that Union Carbide regularly used untested technology in the Bhopal factory.
When the gas leak occurred doctors were not informed of the nature of the gas. This caused the correct treatment and emergency measures to be held off. The manager of Union Carbide, Warren Anderson, was accused of culpable homicide. However, he did not occur in court and both the Indian and American government did not take adequate measures to make sure this man was tried. This led to a series of protests organized by environmental organizations, such as Greenpeace.
Union Carbide denied responsibility for the accident on their website, stating that:
ADVERTISEMENTS:
“The Bhopal plant was owned and operated by Union Carbide India, Limited (UCIL), an Indian company in which Union Carbide Corporation held just over half the stock. The other stockholders included Indian financial institutions and thousands of private investors in India. The plant was designed, built, and managed by UCIL using Indian consultants and workers.”
About the cause of the accident, they claimed that:
“A thorough investigation was conducted by the engineering consulting firm Arthur D. Little. Its conclusion- the gas leak could only have been caused by deliberate sabotage. Someone purposely put water in the gas storage tank, causing a massive chemical reaction. Process safety systems had been put in place that would have kept the water from entering into the tank by accident.”
ADVERTISEMENTS:
After a long procedure in February 1989 eventually a settlement was achieved. Union Carbide promised to pay 470 million dollars compensation. Only a very small part of this compensation was paid to survivors of the environmental disaster. Union Carbide states on its website that it paid the full settlement to the Indian government within 10 days time. In 2004 the Supreme Court forced the Indian government to pay the remaining 330 million dollars compensation to the victims and their families.
Union Carbide sold the Indian factory to a battery producer. In 2001 Dow Chemical Company took control of Union Carbide. These take-overs led to a discussion on responsibility for cleaning up the tons of poisonous waste that are still present in the environment consequential to the 1984 disaster.
Environmental activists are trying to convince Dow Chemical Company to clean up this potential minefield of toxic chemicals. These could cause nervous system failure, liver and kidney disease and possibly cancer for many years to come.
Today, the location is still polluted with thousands of tons of toxic chemicals, such as hexachlorobenzene and mercury. These chemicals are stored in open barrels. Rainfall causes rinsing out of pollution to local drinking water sources. According to BBC research, some wells even contain up to 500 times the legal limit of these toxins. Local residents still suffer from a number of diseases, which appear to be very uncommon among people that do not live in the disaster area.
Essay # 2. The 1952 London Smog Disaster:
December 1952 brought an episode of heavy smog to London, which lasted until March 1953. Light winds and a high moisture content created ideal conditions for smog formation. The unusual cold in London in the winter of 1952-1953 caused additional coal combustion and many people travelled only by car, which caused the occurrence of a combination of black soot, sticky particles of tar and gaseous sulphur dioxide. This resulted in the heaviest winter smog episode known to men.
Measurements suggested that the concentration of particulate matter in the air had reached 56 times its normal level. Sulphur dioxide concentrations increased to seven times its peak level. The smoke particles trapped in the fog gave it a yellow-black colour. Sulphur dioxide reacted with substances in foggy droplets to form sulphuric acid, adding an intense form of acid rain to the process.
By night of December 5 the smog was so dense that visibility dropped to only a few meters. Smog easily entered buildings, causing cinemas, theatres and stores to be closed. Transport became largely impossible. Motor vehicles were abandoned, trains were disrupted and airports were also closed.
The smog episode killed approximately 12,000 people, mainly children, elderly people and people suffering from chronic respiratory or cardiac disease. The number of deaths during the smog disaster was three or four times that on a normal day. They could be attributed to lung disease, tuberculosis and heart failure. Mortality from bronchitis and pneumonia increased more than sevenfold.
Peaks of smoke and sulphur dioxide were in line with peaks in deaths. However, most deaths occurred because of breathing in acid aerosols, which irritates or inflames the bronchial tubes. Acidity was not measured, but estimates show that the pH probably fell to 2 during the peaks in the smog episode.
ADVERTISEMENTS:
The highest death rate during the smog episode occurred on December 8 and December 9, at 900 deaths per day. In some parts of the city death rates even increase to nine times the normal number. Until spring the death rate remained high at almost a thousand more deaths per week than expected in a normal winter.
This heavy pollution and its resulting death toll made people aware of the seriousness of air pollution. The London smog disaster resulted in the introduction of the first Clean Air Acts in 1956.
Essay # 3. The Bangladesh Arsenic Crisis:
Arsenic is a poisonous metalloid that can be found in three forms- yellow, grey and black arsenic. Arsenic compounds are used as pesticides and in various alloys. It is not only toxic to insects and some plants, but also to humans. Its toxicity stems from the similarity of the chemical structure to phosphorus, causing it to partly substitute phosphorus in chemical reactions.
Bangladesh, Asia has had major drinking water problems for many decades. Most people used to drink surface water, which led to the spread of pathogens such as cholera and dysentery. International organizations started promoting groundwater welling for drinking water production. It was however not known that groundwater in Bangladesh contained significant amounts of arsenic.
The arsenic present in the groundwater is of natural origin, being released from subsurface sediment layers under anoxic conditions. Many other Asian countries, such as Vietnam, Cambodia and Tibet are thought to have similar geological environments as Bangladesh. These countries may also have high- arsenic groundwater.
When drinking water wells were installed in Bangladesh, approximately 57 million Bangladeshi people started drinking groundwater with arsenic concentrations far above the legal limit of 0.05 mg/L. After several years of applying groundwater as drinking water over a quarter of the Bangladeshi population exhibited symptoms of arsenic poisoning (arsenicosis).
Arsenic poisoning kills people by disrupting the digestive system. Symptoms include changes in skin colour, formation of skin patches stomach pains, vomiting, delirium and gangrene. Chronic low level arsenic poisoning in Bangladesh also results in cancers, such as lung cancer, skin cancer, kidney cancer and bladder cancer.
The arsenic problem was first discovered in the early 1980s, but public awareness of the arsenic crisis did not emerge until the mid-1990s. The World Health Organisation has described the naturally occurring arsenic as the largest mass poisoning of a population in history. Today, more than 85 million Bangladeshi people are drinking the arsenic-rich groundwater. It is very probable at least 80 million people now suffer from arsenic poisoning. The exact number is uncertain because it may sometimes take up to 10 years before arsenic poisoning can be diagnosed.
Legal proceedings began in London in 2003 to determine whether the British Geological Survey was negligent in failing to detect arsenic in Bangladeshi water supplies. The organization conducted research on behalf of the Bangladesh government in 1992, but did not test the groundwater for arsenic. The organization pleas ‘not guilty’ and argues that at the time of its report little was known about the geological origins of arsenic poisoning.
Essay # 4. The 2004 Asian Earthquake and Tsunami:
We have very recently experienced a natural environmental disaster that made worldwide news. In December 2004 an oceanic earthquake of 9-9,3 on a Richter scale caused devastation in Asian countries. The earthquake was among the 10 deadliest in history. Scientists reported that it had lasted nearly ten minutes when most major earthquakes last no more than a few seconds.
Since 1900 the only earthquakes recorded with a greater magnitude were the 1960 Great Chilean Earthquake (9,5), the 1964 earthquake in Prince William Sound (9,2), and the 1957 earthquake near the Andreanof Islands (9,1). But all these areas were less densely populated than the Asian earthquake area in 2004 and therefore had a much smaller death toll.
The earthquake centred in the Indian Ocean off the coast of northern Sumatra, Indonesia. It caused the entire planet to vibrate at least a few centimetres. It also triggered earthquakes in entirely different regions, such as Alaska.
The earthquake resulted in a tsunami a series of harbour waves of more than 30 meters high, which washed ashore. It caused in serious damage and killed people in Sri Lanka, South India, Thailand, Indonesia, Somalia, Myanmar, Malaysia, the Maldives and other countries. It took officials months to establish an eventual death toll, which is now estimated at between 230.000 and 310,000 people. Tens of thousands of people are still missing. The death toll of the Asian earthquake is surpassed only by an earthquake in China in 1957, which killed over 830.000 people.
In February 2005, every day 500 bodies were found. These were collected and identified, a process that lasted a very long time and caused a terrible stench in the afflicted regions. Bodies were buried as soon as possible for fear of disease. Among the dead were at least 9.000 foreign tourist that stayed in the region.
Sweden was the hardest hit European country with 500 people dead or missing. The true total death toll is not known as many bodies were swept out to sea. Additional deaths may be caused by epidemics and starvation. Millions of people have lost their houses and are packed together in refugee camps on very small space.
The Tsunami not only impacted humans, but also the environment. Severe damage was inflicted on ecosystems such as coral reefs, sand dunes and rock formations, animal and plant biodiversity and groundwater. In addition, the spread of solid and liquid waste and industrial chemicals polluted the water. The destruction of sewage collectors and treatment plants still form a serious threat to the environment. The United Nations Environment Program (UNEP) works with local governments to determine ecological damage and appropriate policy measures.
The Tsunami caused by the earthquake in the Asian region was the worst in human history. The United Nations declared that the relief operation would be the costliest ever. A worldwide collection for tsunami funds resulted in an unbelievable amount of money for emergency aid and restoration of the area. It is estimated this will take between 5 and 10 years.
This year (2006) a report was released by the Tsunami Evaluation Coalition (TEC) on the efficiency of international aid after the earthquake and tsunami in Asia. TEC is a cooperation between UN-organisations such as UNICEF and WHO, consultancies, donors and organisations for humanitarian aid such as Oxfam Novib.
The main positive conclusions were:
(i) High efficiency of the first aid
(ii) Rapid reconstruction of schools and health centres
(iii) Rapid restoring of the fishery sector.
The main areas of improvement were:
(i) The quality of international aid, and support of large international organisations for small local organisations
(ii) A general lack of cooperation between organisations because of large funding
(iii) Unequal distribution of funding; first aid was more adequately funded, whereas more money was required for restoration
(iv) International organisations focus too much on promoting their own name, causing information transfer to be inefficient
(v) Costs for housing and personnel were far too high
(vi) Disaster response quality should be improved, and this was not attended to so far.